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Abstract

This paper analyses a two-region model with vertical innovations that enhance

the quality of varieties of the horizontally differentiated manufactures produced in

each of the two regions. We look at how the creation and diffusion of knowledge

and increasing returns in manufacturing interact to shape the spatial economy. In-

novations occur with a probability that depends on the inter-regional interaction be-

tween researchers (mobile workers). We find that, if the weight of interaction with

foreign scientists is relatively more important for the success of innovation, the model

accounts for re-dispersion of economic activities after an initial stage of progressive

agglomeration as transport costs decrease from a high level.
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1 Introduction

This paper aims to explain how the intra-regional and inter-regional interaction between
scientists impacts knowledge creation and affects the spatial distribution of agents. More-
over, it seeks to elucidate how the weight of such interactions interplays with economic
integration in order to study the evolution of the space economy as trade barriers de-
crease.

The production of knowledge affects the firms’ capacity to innovate, which in turn
allows the production of higher quality manufactured varieties in a region. But the chance
of a successful innovation does not only depend on the number of scientists that live in
the same region, but also on the number of scientists that reside in the other region. The
weight of interaction with “foreign” scientists in the production of knowledge hinges on
the strength of related variety (Frenken et al., 2007), which depends on several factors such
as cognitive proximity, cultural factors, diversity of skills and habilities, among other
factors.

Using a two-region spatial economics model, we show a very diversified set of qual-
itative predictions regarding the spatial distribution of mobile agents, and, especially,
a very rich gallery of possibilities on how the related variety affects the agglomeration
process as economies become more integrated. In particular, we uncover predictions of
re-dispersion after an initial phase of agglomeration. But our main novelty is that the
process of the well known bell-shaped relationship between economic integration and
spatial imbalances occurs with very different qualitative properties, not yet described in
the literature, that stem from the dispersive force that is the importance of inter-regional
interaction.

Throughout the last decades there has been a narrow focus of geographical economics
on pecuniary externalities through linkage effects. Other possible sources of agglomera-
tion economies such as knowledge externalities and technological spillovers are left out
(Gaspar, 2018). Fujita and Mori (2005) argue that this is done out of convenience. Such
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a narrow focus enables researchers to design a microfounded model based on the firms’
perspective using modern tools of economic theory. However, it is true that further devel-
opment in geographical economics requires modelling the creation and transfer of knowl-
edge. In particular, the role of K-linkages has become increasingly relevant in the eco-
nomic geography literature. Building upon pioneering works such as Berliant and Fujita
(2008, 2009, 2012), one should hope that a new comprehensive economic geography the-
ory fully integrates the linkage effects among consumers and producers and K-linkages
in space. According to Fujita (2007), geography is an essential feature of knowledge cre-
ation and diffusion. For instance, people residing in the same region interact more fre-
quently and thus contribute to develop the same, regional set of cultural ideas. However,
while each region tends to develop its unique culture, the economy as a whole evolves
according to the synergy which results from the interaction across different regions (i.e.,
different cultures). That is, according to Duranton and Puga (2001), knowledge creation
and location are inter-dependent. Berliant and Fujita (2012) developed a model of spa-
tial knowledge interactions and showed that higher cultural diversity, albeit hindering
communication, promotes the productivity of knowledge creation. This corroborates the
empirical findings of Ottaviano and Peri (2006, 2008). Ottaviano and Prarolo (2009) show
how improvements in the communication between different cultures fosters the creation
of multicultural cities in which cultural diversity promotes productivity. This happens
because better communication allows different communities to interact and benefit from
productive externalities without risking losing their cultural identities. Berliant and Fu-
jita (2011) take a first step towards using a micro-founded R&D structure to infer about
its effects on economic growth. They find that long-run growth is positively related to the
effectiveness of interaction among workers as well as the effectiveness in the transmission
of public knowledge.

Therefore, combining the typical pecuniary externalities in economic geography mod-
els with the spatial diffusion of knowledge spawned from intra-regional and inter-regional
interactions alike is important if we want to infer about an eventual circular causality be-
tween migration and the circulation of knowledge. In other words, NEG may shed light
on the importance of knowledge exchanged between different regions through trade net-
works compared to “internally” generated knowledge.

Besides the importance of heterogeneity in knowledge, it is also important to discern
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about the relatedness of variety. This relatedness measures the cognitive proximity and
distance between sectors that allows for a higher intensity of knowledge spillovers. Ac-
cording to Frenken et al. (2007), a higher related variety increases the inter-sectoral knowl-
edge spillovers between sectors that are technologically related. This potentially adds a
new dimension to the role of heterogeneity and location in the creation and diffusion of
knowledge. Tavassoli and Carbonara (2014) have tested the role of knowledge intensity
and variety using regional data for Sweden and found evidence that the different types
of cognitive proximity have an important weight. This confirms the relevance of the spa-
tial determinants of innovation and knowledge creation. disentangling between these
different concepts in order to infer about

The incorporation of knowledge creation and diffusion into geographical economics
could also benefit from the introduction of agglomeration mechanisms in endogenous
growth models with innovation. Particularly, innovations that affect quality or a firm’s
cost efficiency are usually driven by stochastic processes. Typically, the production of
knowledge involves some sort of uncertainty. Therefore, we can think of quality as a
proxy, or at least a function, of a given firm’s stock of knowledge. In the literature fol-
lowing Schumpeterian growth models such as Aghion and Howitt (1992); Aghion et al.
(1998), Young (1998), Peretto (1998), Howitt (1999), or more recently Dinopoulos and
Segerstrom (2010), innovations occur with a probability that depends on factors such as
the amount of the firm’s research effort, the common pool of public knowledge available
to all firms, and the individual firm’s quality level. Other works in Schumpeterian growth
theory have used different technology production functions, such as Peretto (1998, 2012,
2015). In other settings, firms are assumed to determine their quality levels optimally
such as in Picard (2015). Introducing geography and worker mobility in these models
allows the success of innovations to depend also on the magnitude of regional interaction
through the exchange of ideas between workers and producers alike among regions. If
each region holds its own set of ideas, or culture, then more localized spillovers trans-
late into higher related variety, as innovation benefits more from a regional common pool
of ideas. However, the interaction between researchers hailing from different cultures is
also important for innovation. This adds a potential new role for transportation costs in
NEG. For instance, higher trade integration, as usually captured by lower transport costs,
is likely to foster the inter-regional communication between researchers, thus adding rel-
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evance to the interaction between researchers from different regions. If cognitive prox-
imity is relatively less important than the interaction between different cultures, then this
unrelated variety implies that lower transport costs are likely to induce the dispersion of
economic activities.

In the present model, we find that if inter-regional interaction is very important for
the success of firms’ innovation, then an increase in economic integration from a very low
level initially fosters agglomeration in a single region. However, above a certain thresh-
old, more integration leads to more symmetric spatial outcomes, because firms find it
worthwhile to relocate to the peripheral regions in order to benefit from higher expected
profits due to the sizeable pool of scientists in the core, which increases the chance of in-
novation in the deindustrialized region. Therefore, our model accounts for re-dispersion
after an initial phase of agglomeration. That is, we are able to uncover a bell-shaped re-
lation between economic integration and spatial development. For a well documented
literature on the causes of a “spatial Kuznets curve”, we refer the reader to Osawa and
Gaspar (2021).

The rest of the paper is organized as follows. Section 2 introduces the spatial economic
model and describes its short-run general equilibrium. Section 3 deals with the existence
and stability of long-run equilibria (spatial distributions). Section 4 discusses the relation-
ship between economic integration and spatial outcomes, which depends on the level of
related variety. Alternatives to the functional form that governs the manufacturing firm’s
innovation process are presented in Section 5. Finally, Section 6 is left for discussion and
concluding remarks.

2 The model

The following is an analytically solvable footloose entrepreneur model à la Pflüger (2004).
The economy is comprised of two regions indexed by i = {1, 2}, two kinds of labour, two
productive sectors and one R&D sector. There is a unit mass of (skilled) inter-regionally
mobile agents (which we dub scientists henceforth) and a mass l ≡ λ > 0 of (unskilled)
immobile workers (just workers, for short) which are assumed to be evenly distributed
across both regions, i.e., li = λ

2 (i = 1, 2). The amount of scientists in region 1 is given
by z1 ≡ z ∈ [0, 1] and fully describes the spatial distribution of agents in the economy
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(Gaspar, 2020).

2.1 Demand

The utility function of a consumer located in region i is given by:

ui = µ ln
(

Mi

µ

)
+ Bi, µ > 0 (1)

where Bi is the numéraire good produced under perfect competition and constant returns
to scale. This good is produced one-for-one using L workers and its price is set to unity
as is the wage paid to workers. The CES composite Mi is given by:

Mi =

[
2

∑
j=1

ˆ
s∈S

(
δ

k(s)
ij dij(s)

)σ−1
σ ds

] σ
σ−1

, (2)

where dij(s) is the demand for manufactures in region i produced in region j for a given
variety s ∈ S, N is the mass of varieties in region i and σ is the elasticity of substitu-
tion between any two varieties. The parameter δ > 1 indexes the step size of quality
improvements in region i after a successful innovation and k is the leading quality grade
for any given variety s. Since δk is increasing in k, the utility in (2) reflects the fact that
consumers have a preference for higher quality (Dinopoulos and Segerstrom, 2006). How-
ever, love for variety implies that varieties, once adjusted for quality, are perfect substi-
tutes. This means that each consumer purchases only the good with the lowest quality
adjusted price, pi(s)/δk

i . If any two goods have the same quality adjusted price, con-
sumers will only buy the highest quality good (Dinopoulos and Segerstorm 2006; 2010;
Davis and Şener, 2012).

Since individual incomes depend on the distribution of labour activities, we have yi =

1 for the workers, and yi = wi, which is the the compensation paid to the scientists that
engage in research. Therefore, the regional income is given by:

Yi =
λ

2
+ wizi.
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The individual budget constraint is given by Bi + Pi Mi = yi + B̄, where B̄ is the initial
endowment of the numéraire and Pi is the regional price index. Since total expenditure
on manufactures must equal Pi times the quantity composite Mi, agents maximize (1)
subject to the follwing budget constraint:

Bi +
2

∑
j=1

ˆ
s∈S

pij(s)dij(s)ds = yi + B̄,

which yields the following optimal individual demands:

dij(s) = µ
ai(s)pij(s)−σ

P1−σ
i

, Bi = yi + B̄− µ, Mi = µP−1
i , (3)

where ai(s) = δ
k(s)(σ−1)
i is just an alternative measure of a variety s’s quality in region i

and Pi is the quality adjusted price index given by:

Pi =

[
2

∑
j=1

ˆ
s∈S

aij(s)pij(s)1−σds

] 1
1−σ

. (4)

We assume that B̄ > µ in order to assure that both types of goods are consumed. From
(1) and (3), we obtain the indirect utility:

vi = yi − µ ln Pi − µ + B̄. (5)

2.2 Manufacturing firms

For each firm, there is a variable input requirement of β workers. A manufacturing firm
in region i thus faces the following cost:

Ci(qi(s)) = βqi(s), (6)

where qi is total production by a firm in region i.
Trade of manufactures between regions is burdened by transportation costs of the

iceberg type. Let the iceberg costs τij ∈ (1,+∞) denote the number of units that must be
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shipped at region i for each unit that is delivered at region j. We have τij = τj ∈ (1, ∞) for
i 6= j and τij = 1 otherwise. The quantity produced by a firm in i is thus given by:

qi(s) =
2

∑
j=1

τijdij
(
1 + zj

)
.

The profit of a manufacturing firm with the leading grade k of variety s in region i is given
by:

π̃i ≡ πi(s ≡ sk) =
2

∑
j=1

pij(sk)dij(sk)

(
λ

2
+ zj

)
− βqi(sk)

=
2

∑
j=1

(
pij(sk)− τijβ

)
dij(sk)

(
λ

2
+ zj

)
, (7)

where sk denotes the highest quality of a given variety s. Given (7) and the optimal in-
dividual demand in (3), the firm’s profit maximizing price is the usual mark-up over
marginal cost:

pij =
σ

σ− 1
τijβ, (8)

which does not depend on the quality of the firm’s variety s. Under (4), the regional
quality adjusted price index in (4) becomes:

Pi =
βσ

σ− 1

(
2

∑
j=1

φij Ajnj

) 1
1−σ

, (9)

where φij ≡ τ1−σ
ij ∈ (0, 1) is the freeness of trade and ni is the number of manufacturing

firms (and manufactured varieties), and:

Ai =
ni

∑
s=1

ai(s),

is the aggregate quality index for region i. The latter also constitutes a measure of the
aggregate regional knowledge level.

Consider now that the aggregate knowledge level in one region is a public good such
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that it becomes readily available to the other region. Then Ai = max {A1, A2} so that both
regions are able to reach the highest aggregate knowledge level available. This leads to
the following assumption.

Assumption 1. Let A1 = A2 = A.

The rationale behind Assumption 1 is basically to eliminate first nature advantages
between regions (i.e., regional asymmetries). This not only makes the analysis much sim-
pler but also allows us to focus on conveying the main message of the paper, which is
the effects of regional interaction on the spatial distribution of economic activities. Under
Assumption 1, the regional price index becomes simply:

Pi =
βσ

σ− 1

(
A

2

∑
j=1

φijnj

) 1
1−σ

. (10)

The higher the aggregate quality, the lower the cost of living in region i.

2.3 R&D sector

We assume that there is free entry in the R&D sector for each variety s. In order to in-
novate, a firms decides ex-ante to employ α scientists in the R&D sector. In doing so, a
firm producing variety s at region i reaches a leading quality grade k with instantaneous
probability:

Φi(s) = min
{

bzi + (1− b)zj

ai(s)
γA, 1

}
, (11)

where b ∈ (0, 1) is the weight of intra-regional interaction in the chance of innovation and
defines the importance of the exchange of ideas between researchers alike among regions,
and γ > 0 is an efficiency parameter. We are assuming that the lowest quality grade
possible is a > 1 so that ai(s) > 1, for any s. In all our analytical and numerical results,
we use a parametrization such that γA

[
bzi + (1− b)zj

]
< ai(s), guaranteeing that the

first term of Φi(s) lies in interval [0, 1].
It is worthwhile explaining how the underlying specification governing the innova-

tion process depends on the magnitude of the interactions (or lack of them) between dif-
ferent “sets of ideas”. Analogous to the interpretation of Berliant and Fujita (2012), we
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implicitly assume that each region holds its own set of ideas (or culture). Therefore, pro-
duction of knowledge (which amounts to innovation), depends on the amount of “within
region” interaction among scientists, but also on the interaction with scientists hailing
from a different region. As such, we can say that b is sort of a measure of the related va-
riety of knowledge (Frenken et al., 2007). A higher related variety means that innovation
benefits more from a regional common pool of ideas, that is, from the interaction between
researchers and workers in the same region. To sum up, the location of economic activities
plays an important role in innovation.

Noteworthy, in Berliant and Fujita (2012), joint knowledge creation is of multiplicative
nature such that no knowledge is created in isolation. But in their setting joint knowledge
creation occurs between just two persons. In the present setting, innovation is a process
of interaction at a regional scale, so it is unreasonable to assume that the firm’s chance of
innovation in region i is zero when all industry and scientists are agglomerated in a single
region i, i.e (zi, zj) = (1, 0),1 because intra-regional interaction alone among scientists is
bound to produce some knowledge. Hence, the additive case seems more reasonable.

In what regards the linearity of (11), its purpose is twofold. First, simplicity, as linear-
ity makes the model more analytically tractable compared to other specifications. Second,
it is enough to produce interesting new insights regarding the effect of knowledge inter-
action between regions on the spatial distribution of economic activities. Moreover, the
fact that scientists from different regions are substitutes from a firm’s innovative perspec-
tive fits well with the assumption that the aggregate knowledge level Ai = A is a “public
good between regions”.2

It is also reasonable to assume that the firm’s research success is greater the higher
the level of aggregate knowledge in a region Ai = A, available to all firms alike. Finally,
we assume that the innovation rate is decreasing in the complexity of each product, as

1Which would happen with a more “common” specification regarding the regional interaction compo-
nent, such as e.g. f (zi, zj) = zb

i z1−b
j . This case is briefly discussed in Section 5.

2It would however be interesting to consider a more general functional form of regional interaction, such

as e.g. f (zi, zj) =
[
bzϕ

i + (1− b)zϕ
j

] 1
ϕ , with ϕ ≥ 0.
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measured by its quality level ai(s) (Li, 2003; Dinopoulos and Segerstrom, 2010).
When a manufacturing firm in region i that produces variety s innovates, it has a prob-

ability Φi(s) of reaching the leading quality grade k. A firm that successfully reaches qual-
ity of grade k becomes the quality leader and charges the monopolistic competitive price,
collecting profits π̃i ≡ πi(sk). Lower quality products are considered obsolete. Firms who
are unable to attain the leading quality grade face creative destruction and are priced out
of the market.

2.4 Short-run equilibrium

Given the research intensity α, each firm faces the following expected profit:

E [πi(s)] = Φi(s)π̃i − [1−Φi (s)] 0− αwi,

where wi is the nominal wage paid to scientists in region i.
Labour market clearing implies that the number of varieties (and hence firms) is given

by S = zi/α, from where the price index in (10) becomes:

Pi =
βσ

σ− 1

(
A
α

2

∑
j=1

φijzj

) 1
1−σ

. (12)

Given free-entry in the R&D sector, in equilibrium expected profits are driven down to
zero, which yields the following condition:

wi =
Φi(s)π̃i

α
.

Using (3), (8), this becomes:

wi =
µai

ασ
Φi

2

∑
j=1

(
pij

Pi

)1−σ (λ

2
+ zj

)
. (13)
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Replacing (8) and (12) in (13) yields:

wi =
µγ

σ

[
bzi + (1− b)zj

] ( λ
2 + zi

zi + φzj
+ φ

λ
2 + zj

φzi + zj

)
. (14)

Finally, using (14) and (5), we get the indirect utility in region i:

vi =
µγ

σ

[
bzi + (1− b)zj

] ( λ
2 + zi

zi + φzj
+ φ

λ
2 + zj

φzi + zj

)
+

µ

σ− 1
ln
[
zi + φzj

]
+ η, (15)

where η ≡ −µ
(

βσ
σ−1

)
+ µ

σ−1 ln
(

A
α

)
− µ + B̄ is a constant.

3 Long-run equilibria

Scientists are free to migrate between regions. In doing so, they choose the region that
offers them the highest indirect utility. The long-run spatial distribution thus depends on
the utility differential:

∆v(z) = v1(z)− v2(z). (16)

We follow Castro et al. (2021) in the characterization of equilibria and their stability. There
are two kinds of long-run equilibria which should be dealt with separately.

1. Agglomeration of all scientists in a single region z∗ = {0, 1} is an equilibrium if and
only if ∆v(1) ≥ 0, or, equivalently, ∆v(0) ≤ 0.

2. Dispersion of scientists z∗ ∈ (0, 1) is an equilibrium if and only if ∆v(z∗) = 0. If
z∗ = 1

2 it corresponds to symmetric dispersion. Otherwise, it is called asymmetric.

Equilibria are stable if, after a perturbation such that z = z∗± ε, with ε > 0 small enough,
the utility differential ∆v(z) becomes such that agents go back to their place of origin, i.e.,
z = z∗. A sufficient condition for stability of agglomeration is ∆v(1) > 0 (or ∆v(0) < 0).
A sufficient condition for stability of dispersion is that ∆v′(z∗) < 0.
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3.1 Existence and multiplicity

Our first result regards the multiplicity of long-run equilibria. Given symmetry across
regions, we focus on the case whereby region 1 is either the same size or is larger than
region 2, i.e., z ∈

[
1
2 , 1
]
.

Symmetric dispersion z∗ = 1
2 is called an invariant pattern, because it is a long-run

equilibrium for the entire parameter range (Aizawa et al., 2020). Next, we have the fol-
lowing result regarding possible equilibria for z ∈

(
1
2 , 1
]

.

Proposition 1. There are at most two equilibria for z ∈
(

1
2 , 1
]

.

Proof. See Appendix A.

We can be more precise regarding the existence of dispersion equilibria with the fol-
lowing result.

Proposition 2. A dispersion equilibrium z ≡ z∗ ∈
(

1
2 , 1
]

exists if b ∈
(

max
{

0, b̃
}

, b̂
)

, where:

b̃ ≡
γ(σ− 1)(2z− 1)

[
(z− 1)z

(
φ2 − 1

)
+ φ2]+ σ [z(φ− 1) + 1] [z(φ− 1)− φ] ln

[
z(φ−1)+1

z(1−φ)+φ)

]
γ(σ− 1)(2z− 1)(φ + 1) [2(z− 1)z(φ− 1) + φ]

,

and

b̂ ≡ 1 + φ2

(1 + φ)2 .

Proof. See Appendix A.

Figure 10 shows one scenario with five qualitatively different cases, with varying free-
ness of trade φ, for b ∈ [0, 1

2), regarding existence of the model’s long-run spatial distribu-
tion, which exhaust all mathematical possibilities for the parameter values (λ, γ, φ, σ, b) =
(2, 0.9, 0.4, 8, 0.339). As a prelude to the forthcoming Section, Figure 10 also numerically
depicts the local stability of each equilibrium, which is to be analysed analytically in
greater detail in Section 3.2.

In Figure 1a, only symmetric dispersion exists and is stable for a very small φ. For
a higher trade freeness we have one stable asymmetric dispersion for z ∈

(
1
2 , 1
]

as por-
trayed in Figure 1b. For a greater φ, Figure 1c shows that the asymmetric dispersion equi-
librium disappears and symmetric dispersion becomes unstable, whereas agglomeration
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0.2 0.4 0.6 0.8 1.0
z

V1(h)-V2(h)

(a) Stable symmetric dispersion: φ = 0.1.

0.2 0.4 0.6 0.8 1.0
z

V1(h)-V2(h)

(b) Stable asymmetric dispersion: φ = 0.3.

0.2 0.4 0.6 0.8 1.0
z

V1(h)-V2(h)

(c) Stable agglomeration: φ = 0.38.

0.2 0.4 0.6 0.8 1.0
z

V1(h)-V2(h)

(d) Stable asymmetric dispersion: φ = 0.4.

0.2 0.4 0.6 0.8 1.0
z

V1(h)-V2(h)

(e) Stable symmetric dispersion: φ = 0.8.

Figure 1 – Long-run equilibria and their stability as φ increases.
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becomes stable. For an even greater φ, Figure 1d illustrates an example of two long-run
dispersion equilibria z∗ for z ∈

(
1
2 , 1
]

and symmetric dispersion z = 1
2 , whereby we can

observe that both symmetric dispersion and the more agglomerated dispersion equilib-
rium are locally stable, whereas the less agglomerated equilibrium is unstable. The econ-
omy re-disperses and agglomeration does not exist in this particular case. However, as the
trade freeness increases further, symmetric dispersion remains stable and all other equi-
libria disappear. In other words, when b ∈ [0, 1

2), the model accounts for a bell-shaped
relationship between economic integration and spatial development, whereby firms are
initially dispersed, then start to agglomerate in a single region as the trade freeness in-
creases, but then find it worthwhile to relocate to the peripheral regions in order to ben-
efit from higher expected profits due to the sizeable pool of scientists in the core which
increases the chance of innovation in the periphery.

The case b ∈ (1
2 , 1] is much less diversified and can be accounted for resorting to a

subset of the pictures from Figure 10. The history as economic integration increases is as
follows. For a very low trade freeness, symmetric dispersion is the only stable equilibrium
as in Figure 1a. For an intermediate value of φ, one asymmetric dispersion equilibrium
arises which is the only stable one and becomes more asymmetric as φ increases further.
This is akin to the picture in Figure 1b. Finally, the asymmetric dispersion equilibrium
gives rise to stable full agglomeration in one single region once φ becomes very high.
This is illustrated in Figure 1c.

In other words, when intra-regional interaction is relatively more important (b > 1
2 ),

the model behaves just like the baseline Pflüger (2004) model.
In the forthcoming Sections, we will analytically and numerically study in greater de-

tail the local stability of the spatial distributions and the qualitative change in the model’s
structure as economic integration increases.
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3.2 Stability

3.2.1 Agglomeration

Regarding agglomeration, using (15) in (16), we have that it is stable if:

S ≡
γ
[
(b− 1)(λ + 2)φ2 + 2b(λ + 1)φ + (b− 1)λ

]
2σφ

− ln φ

σ− 1
> 0.

The second term is positive. Hence, agglomeration is always stable if the first term is also
positive:

b > bs ≡
(λ + 2)φ2 + λ

(φ + 1) [(λ + 2)φ + λ]
.

It is easy to check that bs < 1
2 if φ ∈

(
λ

λ+2 , 1
)

, which means that, if φ ∈
(

λ
λ+2 , 1

)
and

b > 1
2 , agglomeration is unstable. In any case, we can conclude that agglomeration is

unstable if related variety is too strong.
Let us now define as sustain point, a value of φ such that S(φ) = 0. We have the

following result relating the freeness of trade and the relatedness of variety.

Proposition 3. If b < 1
2 , there exist two sustain points, φs1 and φs2, and agglomeration is un-

stable for φ ∈ {(0, φ1s) ∪ (φ2s, 1)} and stable for φ ∈ (φ1s, φ2s). If b > 1
2 , there exists a unique

sustain point φs1 and agglomeration is unstable for φ ∈ (0, φ1s) and stable if φ ∈ (φ1s, 1).

Proof. See Appendix A.

The result in Proposition 3 suggests that an intermediate level of economic integration
favours agglomeration only if the interaction with foreign scientists is relatively more
important for the chance of successful innovation. By contrast, if the within region inter-
action of scientists is more important, agglomeration is only possible when the freeness
of trade is high enough.

3.2.2 Symmetric dispersion

Regarding symmetric dispersion z∗ = 1
2 , using (15) in (16) we can say that it is stable if:

B ≡ γ(σ− 1)
[
2b(λ + 1)(φ + 1)2 − (2λ + 3)φ2 − 2λ− 1

]
+ 2σ

(
1− φ2

)
< 0. (17)
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In fact, it is always unstable if the first term is positive, i.e. if:

b > b̄ ≡ (2λ + 3)φ2 + 2λ + 1
2(λ + 1)(φ + 1)2 .

This means that if related variety is prohibitively high, symmetric dispersion is surely
unstable.

We can observe that B in (17) is a second degree polynomial in φ with at most two
zeros, i.e., break points φb1 and φb2, with φb1 < φb2 and has a negative leading coefficient.
Therefore if both break points exist, we have that symmetric dispersion is stable for φ <

φb1, unstable for φ ∈ (φb1, φb2), and stable again for φ > φb2. This means that our model
accounts for the possibility of initial agglomeration as trade integration increases from a
very low level and re-dispersion for very high levels of trade integration.

More specifically, the breakpoints are given by:

φb1 =

√
γ2(σ− 1)2 [8b(λ + 1)2 − 4λ2 − 8λ− 3] + 4γσ(σ− 1) + 4σ2 − 2bγ(λ + 1)(σ− 1)

γ(σ− 1) [2b(λ + 1)− 2λ− 3]− 2σ

φb2 = −
√

γ2(σ− 1)2 [8b(λ + 1)2 − 4λ2 − 8λ− 3] + 4γσ(σ− 1) + 4σ2 + 2bγ(λ + 1)(σ− 1)
γ(σ− 1) [2b(λ + 1)− 2λ− 3]− 2σ

. (18)

The break point φb1 lies in the interval (0, 1) if and only if:

(i). γ ∈
(

2σ

(2λ + 1)(σ− 1)
, 1
)

,

(ii). b ∈ [b1, b2) ,

where:

b1 =
[γ(2λ + 1)(σ− 1)− 2σ] [γ(2λ + 3)(σ− 1) + 2σ]

8γ2(λ + 1)2(σ− 1)2 ,

b2 =
γ(2λ + 1)(σ− 1)− 2σ

2γ(λ + 1)(σ− 1)
.

We have that b1 ∈
(

0, 1
2

)
and b2 ∈ (b1, 1). If, additionally, b < 1

2 , then we have also that
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φb2 ∈ (0, 1).3 This means that the possibility of re-dispersion following agglomeration as
φ increases requires that related variety is neither too high or too low.

However, if b > 1
2 , then φb2 does not exist and we have a single break point φb1 if

conditions (i) and (ii) are satisfied.

3.2.3 Asymmetric dispersion

Although we cannot find an explicit stability condition for any asymmetric dispersion
equilibrium z∗ ∈

(
1
2 , 1
)

, we can use equation (23) that solves the equilibrium condition
∆v = 0 given by implicitly by λ = λ∗(z) in the proof of Proposition 2 (Appendix A.2).
Then the stability condition of an asymmetric dispersion equilibrium is given by:

d∆v
dz

(z∗)
∣∣∣∣
λ=λ∗(z)

< 0.

Specifically, using (15) and differentiating (16) with respect to z, and evaluating at (23),
we get that an assymetric equilibrium z∗ ∈

(
1
2 , 1
)

is stable if λ∗(z) > 0 and:

G ≡(2z− 1)
(

φ2 − 1
) [

(2b− 1)γ(σ− 1)(1− 2z)2 − σ
]
+

+ σ
[
2z2(φ− 1)2 − 2z(φ− 1)2 + φ2 + 1

]
ln
[

z(φ− 1) + 1
z(1− φ) + φ

]
< 0. (19)

We have the following result.

Proposition 4. If b < 1
2 an asymmetric equilibrium z∗ ∈

(
1
2 , 1
)

is stable for a high enough

related variety. If b > 1
2 , an asymmetric equilibrium is always stable when it exists.

Proof. See Appendix A.

3If γ < 2σ
λ(σ−1) , then b2 ∈

(
b1, 1

2

)
and the condition is trivially met by (ii). In this case, both break points

exist.
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Figure 2 – Stability of asymmetric dispersion. The less opaque surface corresponds
to G < 0 and λ∗(z) > 0 in (z, φ, b)–space for σ = 8 and γ = 0.9. The black plane
corresponds to b = 1

2 .

Figure 2 illustrates the Proposition by setting σ = 8 and γ = 0.9 and plotting the
surface corresponding to {(z, φ, b) : G < 0∩ λ∗(z) > 0}. For b < 1

2 , an asymmetric equi-
librium may exist that is not stable, and a higher b favours its stability. If b > 1

2 , an asym-
metric equilibrium is always stable when it exists, but its existence seems to be favoured
by a lower b. In other words, an asymmetric equilibrium exists and is stable when b is
close enough to 1

2 .
Regarding φ, a higher freeness of trade φ seems to disfavour the stability of asymmet-

ric dispersion.

4 The impact of economic integration

It is common in geographical economics to study the qualitative change of the spatial
economy as economic integration increases. We will now look at some bifurcation dia-
grams using the freeness of trade, φ, as the bifurcation parameter. To provide a complete
gallery, we depict 6 qualitatively different scenarios, keeping most parameter values con-
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stant (except for the sixth scenario) and varying b, thus placing emphasis on changes in
the value of the weight of within-region interaction. Two additional illustrations for dif-
ferent parameter values are provided in Appendix B. The illustrations, 8 in total, exhaust
all mathematical/numerical possibilities.4 The six scenarios analysed in this Section are
as follows:

(i). (λ, γ, σ, b) = (2, 0.9, 8, 0.33);

(ii). (λ, γ, σ, b) = (2, 0.9, 8, 0.338);

(iii). (λ, γ, σ, b) = (2, 0.9, 8, 0.339);

(iv). (λ, γ, σ, b) = (2, 0.9, 8, 0.35);

(v). (λ, γ, σ, b) = (2, 0.9, 8, 0.55);

(vi). (λ, γ, σ, b) = (4, 0.9, 8, 0.55);

For a prohibitively low related variety, scientists disperse evenly among the two re-
gions, irrespective of the value of the freeness of trade. The economic intuition is simple:
a lower b implies higher chance of successful innovation with more scientists living in
the other region. Hence, the nominal wage is higher when the scientists are more evenly
distributed.

In scenario (i), shown in Figure 3, related variety is such that within-region interac-
tion is relatively more important (b = 0.33) but is still low. For a low freeness of trade,
symmetric dispersion is stable because firms wish to avoid the burden of a very costly
transportation supplying to farmers from full agglomeration in a single region. As φ in-
creases, the economy initially agglomerates, but then re-disperses as φ increases further.
This re-dispersion process occurs because, for a very high economic integration, firms
find it profitable to relocate to the less industrialized region in order to benefit from the

4This can be shown through the combination of the analysis performed in the previous sections with
various simulations under a very wide range of parameter values.
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Figure 3 – Bifurcation diagram for scenario (i). Filled lines correspond to stable equil-
bria and dashed lines correspond to unstable equilibria.
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Figure 4 – Bifurcation diagram for scenario (ii). Filled lines correspond to stable equil-
bria and dashed lines correspond to unstable equilibria.
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Figure 5 – Bifurcation diagram for scenario (iii). Filled lines correspond to stable equi-
lbria and dashed lines correspond to unstable equilibria.
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Figure 6 – Bifurcation diagram for scenario (iv). Filled lines correspond to stable equi-
lbria and dashed lines correspond to unstable equilibria.
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Figure 7 – Bifurcation diagram for scenario (v). Filled lines correspond to stable equil-
bria and dashed lines correspond to unstable equilibria.
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Figure 8 – Bifurcation diagram for (λ, γ, σ, b) = (4, 0.9, 8, 0.55). Filled lines correspond
to stable equilbria and dashed lines correspond to unstable equilibria.
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pool of scientists in the more agglomerated region, which generates a higher chance of in-
novation and thus higher expected profits. Noteworthy, the turning point in the agglom-
eration process happens before industry reaches full agglomeration in a single region.

In scenario (ii), illustrated by Figure 4, related variety is just slightly higher, and the
model still accommodates for re-dispersion. However, the re-dispersion process is not
smooth – the economy suddenly jumps to symmetric dispersion from a fairly asymmetric
equilibrium spatial distribution.

Scenario (iii) also just slightly increases related variety compared to the previous sce-
nario (see Figure 5), and the story as economic integration increases is very similar, except
that in this case, full agglomeration is stable for a small range of intermediate values of
φ, as predicted by Proposition 3. The parametrization here also corresponds to that illus-
trated in Figure 10.

Figure 6 illustrates scenario (iv) and shows that the sudden re-dispersion process un-
der a slightly higher b now happens from the state of full agglomeration directly to the
state of symmetric dispersion.

Finally, in scenario (v), for a sufficiently high b > 1/2, within-region interaction
among scientists improves the chances of innovation enough such that the real wage be-
comes higher when they are either partially agglomerated in one region for low values
of φ, or completely agglomerated in one region for a high enough φ. This is portrayed in
Figure 7.

We can thus conclude that a higher related-variety is associated with a more pro-
nounced agglomeration during the industrialization process, for intermediate values of
economic integration, until eventually it becomes so high that re-dispersion is no longer
possible because within-region interaction among scientists is too important to make any
deviation to a deindustrialized region worthwhile.

In scenario (vi) we illustrate the qualitative change in the spatial structure of the econ-
omy as φ increases for b > 1/2, but with a higher λ, since, with the parameter values of
the previous scenario, agglomeration would be ubiquitously stable (and hence uninterest-
ing) for higher values of b. In Figure 8, we can observe the typical supercritical pitchfork
that we can observe in the original Pflüger (2004) model. That is, for low levels of eco-
nomic integration, symmetric dispersion is stable. As φ increases, one region smoothly
becomes more and more industrialized en route to a full agglomeration whereby that
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region becomes a core.
Noteworthy, in any scenario for which a break point exists at symmetric dispersion,

it can be shown analytically that the model undergoes a pitchfork bifurcation, either su-
percritical or subcritical, depending on the parameter values).5 Additionally, in Figures 4
and 4 (scenarios (ii) and (iii)), a limit point φ ≡ φl ∈ (φb2, 1) is discernible at which two
asymmetric equilibria, along a curve tangent to φl that lies to its left, collide and coa-
lesce. This suggests that in both scenarios (i) and (ii) the model undergoes a saddle-node
bifurcation at some asymmetric equilibrium z∗ ∈

(
1
2 , 1
)

. This kind of bifurcation also
appears in the two-region footloose entrepreneur model by Forslid and Ottaviano (2003)
with heterogeneous agents analysed by Castro et al. (2021) and also in the Pflüger (2004)
model extended to multiple regions by Gaspar et al. (2018). This kind of bifurcation seems
to be associated with discontinuous jumps between some asymmetric equilibrium other
than agglomeration and the symmetric dispersion once φ rises (falls) above (below) some
threshold level.

5 On the role of regional interaction

It is worthwhile investigating how different types of regional interaction determining
the success of innovation affect the spatial outcomes in the economy. The process of
(de)industrialization as economic integration increases can be shown to vary quite a lot
under different functional forms for the probability of a successful innovation.

5.1 A simple scenario

We first consider a slight modification in the success of innovation that deems the model
even more simple, but leads to very different results regarding the relationship between
regional interaction in the production of knowledge and the long-run equilibrium spatial
outcomes.

5The conditions for a pitchfork bifurcation in Guckenheimer and Holmes (2002) can be shown to hold
up to the third derivative of ∆v(z) with respect to z, whose sign is very difficult to determine analytically.
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Suppose now that a firm producing variety s at region i reaches a leading quality grade
k with probability:

ΦS
i (s) = min

{
zi + czj

ai(s)
γA, 1

}
, (20)

where c ∈ (0, 1) now represents the weight of inter-regional interaction in the chance of
successful innovation. In other words, it is a measure of unrelated variety. We assume a
parametrization that guarantees that the first term lies in the interval [0, 1].

This specification yields at most one asymmetric equilibrium z∗ ∈
(

1
2 , 1
]

(see Ap-
pendix C.1), besides the symmetric dispersion which remains an invariant pattern. Ag-
glomeration exists and is stable for a high enough freeness of trade (sustain point φS

s and
symmetric dispersion is stable for a low enough freeness of trade (break point φS

b1 (see
Appendix C.2). Moreover, it is possible to show that the model undergoes a supercritical
pitchfork bifurcation at the symmetric dispersion (C.3), just as in Pflüger (2004).

Consider an increase in the parameter c. We have:

∂∆vS

∂c
=

γµ(2z− 1)
[
λ− 2z2 + φ2(λ + 2(z− 1)z + 2) + 2z

]
2σ [z(φ− 1) + 1] [z(φ− 1)− φ]

,

which is negative for z ∈
(

1
2 , 1
)

. In other words, a higher c decreases the utility differ-
ential. Castro et al. (2021) have recently demonstrated that an exogenous shock in any
parameter that leads to a higher utility differential favours agglomeration and discour-
ages dispersion. We have the following result.6

Lemma 1. Under ΦS
i (s), an increase in the weight of inter-regional interaction in the chance of

innovation (i.e. higher c) does not favour agglomeration.

Proof. See Proposition 9 of (Castro et al., 2021, p.197).

In other words, a higher c favours symmetric dispersion and discourages agglomera-
tion.7 As illustrated in Figure 9, a higher c shifts the pitchfork bifurcation rightwards.

6The result does not apply to our benchmark case because it does not comply with the assumptions
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Figure 9 – Bifurcation diagrams: (i) to the left, in black, we set c = 0.7; (ii) to the right,
in red, we set c = 0.9. Parameter values are (σ, γ, λ) = (8, 1, 4).

The interpretation behind these results is very straightforward: a higher c implies
higher chance of successful innovation with more scientists living in the other region.
Hence, the nominal wage is higher when the scientists are more evenly distributed. So,
a higher c makes stability of symmetric dispersion (agglomeration) more (less) likely for
a higher range of φ, and asymmetric dispersion becomes stable for a higher freeness of
trade.

In sum, under this second specification with ΦS
i (s) in (20), agglomeration is a smooth

and progressive progress as the trade freeness increases, and the unrelatedness of variety
measured by c adds an additional dispersion force to the benchmark model. The most
striking contrast with the first scenario is the absence of a “bubble” shaped relation be-
tween economic integration and spatial imbalances in the second scenario.

needed, which are stated in Castro et al. (2021, pp. 197).
7Note that the sufficient condition provided by the Lemma is sufficient but not necessary. It is possible,

yet much more cumbersome, to demonstrate that ∂SS

∂c < 0, ∂BS

∂c < 0 and ∂GS

∂c < 0 by using the corresponding
expressions in Appendix C.2.
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5.2 Multiplicative case: a numerical analysis

Several other functional forms for Φi(s) could be worth checking. In fact, it is worth
considering the case where scientists are imperfect substitutes from a firm’s innovative
perspective. For instance, a Cobb-Douglas specification such as:

ΦCB
i (s) = min

{
zb

i z1−b
j

ai(s)
γA, 1

}
, (21)

yields a multiplicative scenario, and thus brings our setup closer to Berliant and Fujita
(2008). Again we shall impose a parametrization that guarantees that the first term lies in
the interval [0, 1].

Regarding agglomeration, it cannot be an equilibrium because ∆v(1) = µ ln φ
σ−1 < 0.

Since no innovation occurs, expected profits are driven down to zero and the only thing
that matters is the cost-of-living, which is positive in the fully agglomerated region. How-
ever, if an agent moves to the “empty” region, innovation occurs through inter-regional
interaction and he will earn a positive nominal wage, which means that exogenous per-
turbations always increase the utility of agents. While this may strike as an implausible
outcome, one way to counter this would be to specify a different probability for corner
equilibria, potentially following Berliant and Fujita (2008).

The symmetric dispersion can be shown to retain the qualitative properties of the bench-
mark case analyzed in Section 3.2.2.8 That is, there exist two break points φb1 and φb2

given by (18) and symmetric dispersion is stable for φ ∈ {(0, φb1) ∪ (φb2, 1)}, and unsta-
ble for φ ∈ (φb1, φb2).

We can grasp the general qualitative behaviour and properties of the model under
ΦCB

i (s) by depicting a gallery of bifurcation diagrams for several different values of b.The
benchmark parameter values are (σ, γ, λ) = (8, 1, 4), while the value for b is reported in
the caption of each picture.

8This has been checked analytically although the proofs are not presented in this paper, for the sake of
space. The formal proofs are available from the authors upon request.
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(a) Stable symmetric dispersion: b = 0.1.
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(b) Stable symmetric dispersion: b = 0.44.
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(c) Stable symmetric dispersion for φ < φb1 and
φ < φb2: b = 0.45.
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(d) Stable symmetric dispersion for φ < φb1: b =
0.5.
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(e) Stable symmetric dispersion for φ < φb1 and
stable asymmetric dispersion for φ > φb1: b =
0.65.
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(f)
No stable equilibria: b = 0.75

.

Figure 10 – Bifurcation diagram for (λ, γ, σ, b) = (4, 1, 8). Filled lines correspond to
stable equilibria and dashed lines correspond to unstable equilibria.
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As b increases from a very small value, initially only symmetric dispersion exists and
is stable (Figure 10(a)). Eventually there emerge two curves of unstable asymmetric dis-
persion equilibria (Figure 10(b)), one with a minimum and the other with a maximum
(for the same φ due to symmetry. For higher levels of b, the extrema collide vertically at
symmetric dispersion and two curves of asymmetric dispersion equilibria branch from
two break points. Symmetric dispersion is stable below the lowest break point and above
the highest break point, and unstable in between (Figure 10(c)). Further increases in b
will make the highest breakpoint disappear and we end up with a subcritical pitchfork
bifurcation (Figure 10(d)), as in Fujita et al. (1999), whereby symmetric dispersion is sta-
ble for low values of φ and becomes unstable for high values of φ. The main difference
is that there are no stable equilibria above the break point. If b increases even more, we
end up with a supercritical pitchfork bifurcation whereby a stable symmetric dispersion
loses stability for φ large enough (Figure 10(e)). This state encounters a primary branch
of stable asymmetric equilibria that, apparently, undergoes a secondary saddle-node bi-
furcation.9 Finally, for a prohibitively high value of b, there are no stable equilibria in the
model, as shown by Figure 10(f).

This scenario with ΦCB
i (s) as the chance of a successful innovation departs from the

previous two cases in two major aspects. First, it reverses the predictions about the spatial
distribution of economic activities with respect to increases in φ (except for the case in
Figure 10(c) where re-dispersion is possible). While this may be hard to explain from an
economic point of view, one may conjecture that this may be due to the multiplicative
nature of the probability of innovation in this scenario that contrasts with the additive
nature in the first benchmark case and in the simpler case of ΦS

i (s). Second, the last
scenario seems to be poorer in terms of predictions since, e.g., the only stable asymmetric
equilibria exist for a very small range and values of φ.

9This qualitative scenario is very similar to the one encountered by Castro et al. (2021, Fig. 4 in pp. 197)
except that the stability of equilibria is “reversed” and the bifurcation employed by them is a heterogeneity
parameter.
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6 Discussion and concluding remarks

In this paper we have analysed a two-region model with vertical innovations that en-
hance the quality of varieties of the horizontally differentiated manufactures produced
in each of the two regions. We looked at how the creation and diffusion of knowledge
and increasing returns in manufacturing interact to shape the spatial economy. Inno-
vations occur with a probability that depends on the inter-regional interaction between
researchers (mobile workers).

We find that, if the weight of interaction with foreign scientists is relatively more im-
portant for the success of innovation, the model accounts for re-dispersion of economic
activities after an initial stage of progressive agglomeration as transport costs decrease
from a high level. However, the relationship between economic integration and spatial
imbalances is far from trivial, as we have shown a myriad of different qualitative possi-
bilities that depend on the weight of inter-regional interaction between scientists.

Our main results so far have been shown to hinge on the functional form for the prob-
ability of innovating. We have studied two simple different additive cases and provided
insights on a multiplicative scenario. However, it would be worthwhile further investi-
gating how different types of regional interaction determining the success of innovation
affect the spatial outcomes in the economy. The process of (de)industrialization as eco-
nomic integration increases can be shown to vary quite a lot under different functional
forms for the probability of a successful innovation. This becomes noteworthy when we
take the simplest case of knowledge creation depending on scientists across different re-
gions, and even more so when knowledge creation is of multiplicative nature as in e.g.
Berliant and Fujita (2012).
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A Proofs

This appendix contains the more cumbersome formal proofs that support our main re-
sults.

A.1 Proof of proposition 1

Differentiating ∆v(z) in (16) yields:

d∆v
dz

(z) =
µP(z)

2(σ− 1)σ [z(φ− 1) + 1] 2 [z(1− φ) + φ] 2 , (22)

where:
P(z) = a1z4 + a2bz3 − 2(1− φ)a3z2 + 2(1− φ)a4z + a5,

with:

a1 =4(1− 2b)γµ(σ− 1)(φ− 1)3(φ + 1)

a2 =8(2b− 1)γµ(σ− 1)(φ− 1)3(φ + 1)

a3 =γ(σ− 1)
{

b(φ + 1)
[
(λ− 2)φ2 − λ + 18φ− 4

]
− φ [λ(φ− 1)φ + λ + 6φ] + λ− 8φ + 2

}
+ σ(φ + 1)(φ− 1)2

a4 =γ(σ− 1)
{

λ(φ− 1)
[
b(φ + 1)2 − φ2 − 1

]
+ 2φ [b(φ + 1)(φ + 5)− φ(φ + 2)− 3]

}
+ σ(φ + 1)(φ− 1)2

a5 =γ(σ− 1)
{

λ
(
φ2 + 1

) [
b(φ + 1)2 − φ2 − 1

]
+ 2φ

[
b
(
φ3 + 3φ2 + φ− 1

)
− φ

(
φ2 + φ + 1

)
+ 1
]}

− 2σφ
(
φ2 − 1

)
.

The denominator of (22) is positive, which means that the sign of d∆v
dz (z) is given by the

sign of P(z), which is a fourth degree polynomial in z. Therefore, ∆v(z) has at most four
turning points and, thus, at most five equilibria for z ∈ [0, 1]. We know that z = 1

2 is an
invariant pattern. By symmetry, we can establish that there exist at most two equilibria
for z > 1

2 , which concludes the proof. �
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A.2 Proof of Proposition 2

Proceeding in a familiar fashion as in Gaspar et al. (2018, 2021), the equilibrium condition
∆v(z) = 0 yields:

λ ≡ λ∗(z) = −2
b1b2 + b3 ln

[
z(φ−1)+1

z(1−φ)+φ)

]
b4

, (23)

where:

b1 = γ(σ− 1)(2z− 1)

b2 = φ2
[
2b(z− 1)z + b− z2 + z− 1

]
+ (1− 2b)(z− 1)z + bφ

b3 = σ [z(φ− 1) + 1] [z(φ− 1)− φ]

b4 = γ(σ− 1)(2z− 1)
[
b(φ + 1)2 − φ2 − 1

]
.

It is easy to note that λ∗(z) has a vertical asymptote if and only if b4 = 0, i.e., iff:

b = b̂ ≡ φ2 + 1
(φ + 1)2 .

For z ∈
(

1
2 , 1
]

, the log term of λ∗(z) is negative, as is b3. Next, we have b1 > 0, and b2 > 0
if:

b ≥ b ≡
(z− 1)z

(
φ2 − 1

)
+ φ2

2(z− 1)z (φ2 − 1) + φ(φ + 1)
,

where 0 < b < b̂. Since b4 < 0 only if b < b̂, we have that λ∗(z) > 0 if b ∈
[
b, b̂
)

and

λ∗(z) < 0 if b ∈
(

b̂, 1
)

. For b ∈ (0, b), we need further inspection.
We have that:

∂λ∗

∂b
(z) =

2(φ + 1) [z(φ− 1) + 1] [z(φ− 1)− φ]
{

γ(σ− 1)(2z− 1)(φ− 1) + σ(φ + 1) ln
[

z(φ−1)+1
z(1−φ)+φ)

]}
γ(σ− 1)(2z− 1) [−b(φ + 1)2 + φ2 + 1]2

,

which is positive for all z ∈
(

1
2 , 1
]

. The unique zero of λ∗(z) in terms of b is given by:

b = b̃ ≡
γ(σ− 1)(2z− 1)

[
(z− 1)z

(
φ2 − 1

)
+ φ2]− σ [z(φ− 1) + 1] [z(φ− 1)− φ] ln

[
z(φ−1)+1

z(1−φ)+φ)

]
γ(σ− 1)(2z− 1)(φ + 1) [2(z− 1)z(φ− 1) + φ]

,
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with b̃ < b and λ∗(z) > 0 for b ∈ (b̃, b̂). It is possible to show that b̃ is increasing in γ.
Moreover, we have b̃ = 0 if and only if:

γ = γc ≡
σ [z(1− φ)− 1] [z(1− φ) + φ] ln

[
z(φ−1)+1
z(1−φ)+φ

]
(σ− 1)(2z− 1) [(z− 1)z (φ2 − 1) + φ2]

> 0.

This means that b̃ ≥ 0 if γ ≥ γc and b̃ < 0 if γ < γc and γc ∈ (0, 1]. Since γc ∈ (0,+∞),
we have b̃ < 0 if γc > 1. As a result, we have b̃ < 0 if γ ∈ (0, min{1, γc}) and b̃ ≥ 0
if γ ∈ [min{1, γc}, 1). Then λ∗(z) > 0 if γ ∈ (0, min{1, γc}) and b ∈ (0, b̂). Otherwise,
we have λ∗(z) > 0 if γ ∈ [min{1, γc}, 1) and b ∈ (b̃, b̂). Therefore, λ∗(z) is positive for
b ∈

(
max

{
0, b̃
}

, b̂
)

and negative for b ∈
{(

0, max
{

0, b̃
})
∪
(

b̂, 1
)}

, where max
{

0, b̃
}

depends on γc and on the value of γ as described above.
Thus, we can assert that, if b ∈

(
max

{
0, b̃
}

, b̂
)

, there exists a value of λ > 0 such that

at least one (at most two) dispersion equilibrium z ≡ z∗ ∈
(

1
2 , 1
]

exists. This concludes
the proof. �

A.3 Proof of Proposition 3

We have:
lim

φ→0+
S(φ) = −∞ and S(1) = γ(2b− 1)(λ + 1)

σ
.

Therefore, S(1) > 0 if b > 1
2 and we conclude that S(φ) has at least one zero for φ ∈ (0, 1).

Further, we have:

dS
dφ

(φ) =
1

2φ2

{
γ(b− 1)

[
λ
(
φ2 − 1

)
+ 2φ2]

σ
− 2φ

σ− 1

}
,

whose sign depends on that of the second term, which is a second degree polynomial
and thus has at most two zeros {φ−, φ+}, with φ+ > φ−. However, only φ+ lies on the
interval φ ∈ (0, 1):

φ+ =

σ

[
1

σ−1 −
√

γ2(b−1)2λ(λ+2)
σ2 + 1

(σ−1)2

]
γ(b− 1)(λ + 2)

.
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Given that the leading coefficient of the polynomial is negative, we have that S(φ) is
increasing for φ ∈ (0, φ+) and decreasing for φ ∈ (φ+, 1). Thus, S(φ) has at most two
zeros for φ ∈ (0, 1), called sustain points φs1 and φs2 (with φs1 < φs2).10 If b < 1

2 , there
exist two sustain points φs1 ∈ (0, 1) and φs2 ∈ (0, 1) and we have S(φ) < 0 for φ ∈
{(0, φ1s) ∪ (φ2s, 1)} and S(φ) > 0 for φ ∈ (φ1s, φ2s). If b > 1

2 , there exists one unique
sustain point φs1 ∈ (0, 1) and we have S(φ) < 0 for φ ∈ (0, φ1s) and S(φ) > 0 for
φ ∈ (φ1s, 1), which concludes the proof. �

A.4 Proof of Proposition 4

Taking the derivative of G in (19) with respect to b we get:

∂G
∂b

= −2γ(σ− 1)(2z− 1)3
(

1− φ2
)
< 0, z ∈

(
1
2

, 1
)

Next, solving G in (19) for b yields:

b = bc ≡
(2z− 1)

(
1− φ2) [σ + γ(σ− 1)(1− 2z)2]− σ

[
2z2(φ− 1)2 − 2z(φ− 1)2 + φ2 + 1

]
ln
[

z(φ−1)+1
z(1−φ)+φ

]
2γ(σ− 1)(2z− 1)3 (1− φ2)

.

(24)

As a result, we have G > 0 for b < bc and G < 0 for b > bc. Next, we will prove that
bc < 1/2.

First, notice that limφ→1 bc =
1
2 . Next, we have:

∂bc

∂φ
=

σN
2γ(σ− 1)(2z− 1)3 (φ2 − 1)2

[z(φ− 1) + 1] [z(φ− 1)− φ]
,

10One of which is given by φ = 1 if b = 1
2 .
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where:

N =(2z− 1)
(

φ2 − 1
) [

2z2(φ− 1)2 − 2z(φ− 1)2 + φ2 + 1
]
−

− 4 [z(φ− 1) + 1] 2 [z(1− φ) + φ] 2 ln
[

z(φ− 1) + 1
z(1− φ) + φ

]
.

The numerator of the derivative is negative. As for N , observe that:

∂N
∂z

=− 4σ(2z− 1)(φ− 1)2×

×
{
(2z− 1)

(
1− φ2

)
+ 2 [z(φ− 1) + 1] [z(φ− 1)− φ] ln

[
z(φ− 1) + 1
z(1− φ) + φ

]}
.

The first term inside the curly brackets is positive and the second one is negative as is
the log term. Therefore, we have ∂N

∂z < 0. Since N
(

z = 1
2

)
= 0 and given that N is

continuous in z, we can conclude that N < 0 for z ∈
(

1
2 , 1
)

. Thus, we have ∂bc
∂φ > 0,

which means that bc < 1
2 . Thus, if b > 1

2 , we have G < 0 for any value of λ such that
λ∗(z) > 0. This concludes the proof.

B Related variety and economic integration: additional il-

lustrations

In this Appendix we change the benchmark parameter values to find out whether the
value of b can bear more drastic implications to the qualitative structure of the spatial
economy. Particularly, we set (λ, γ, σ) = (1, 0.9, 8).

In Figure 11 we set b = 0.146, which is considerably lower than in the previously il-
lustrated cases. We can observe that the re-dispersion process is quite different. Here, for
very low levels of φ an asymmetric dispersion equilibrium exists and is stable, and be-
comes more asymmetric as φ increases. However, after a certain point, the economy starts
to re-disperse until φ finds a limit point φl ∈ (φb2, 1) above which the economy suddenly
re-disperses evenly among the two regions. That is, the asymmetric dispersion undergoes
a saddle-node bifurcation (refer to the end of Section 4 for a more detailed discussion)
and there exists locational hysteresis as both an asymmetric dispersion equilibrium and

36



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

z

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

z

Figure 11 – Bifurcation diagram for (λ, γ, σ, b) = (1, 0.9, 8, 0.1405). Filled lines corre-
spond to stable equilbria and dashed lines correspond to unstable equilibria.
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Figure 12 – Bifurcation diagram for (λ, γ, σ, b) = (1, 0.9, 8, 0.15). Filled lines corre-
spond to stable equilbria and dashed lines correspond to unstable equilibria.

the symmetric dispersion equilibrium are simultaneously stable for φ ∈ (φb2, φl). The
symmetric equilibrium undergoes a subcritical pitchfork bifurcation at φ = φb2.

What is perhaps more striking though is that, as φ increases further, it encounters an
interval φ ∈ (φs1, φs2) whereby both agglomeration and symmetric dispersion are sta-
ble, and a curve of unstable asymmetric equilibria exists in between. The striking feature
is that the curve of agglomeration equilibria is not connected to any other kind of equi-
librium.However, further increases in b will eventually connect the asymmetric equilib-
rium curve with the full agglomeration as shown in Figure 12.This apparently strange
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behaviour may be attributed to the limitations imposed by the implicitly adopted asymp-
totic stability as the dynamic stability criterion in this paper. One way to investigate this
issue could be to employ strategic stability as in Demichelis and Ritzberger (2003), which
entails additional necessary conditions for stability which restrict the equilibrium set.11

The potential game’s approach taken recently by Osawa and Akamatsu (2020) could also
be analysed in this context for equilibrium refinement. Finally, the connection via an
increase in b could hint at the existence of co-dimension 2 bifurcations with φ and b em-
ployed as bifurcation parameters.12 Although these are all relevant points, we do not
pursue these issues further in our paper.

In Figure 12, we have b = 0.15, and the economy reaches full agglomeration smoothly
as φ increases but then jumps discontinuously to symmetric dispersion. We have the
single breakpoint φb2 ∈ (φs1, φs2), which means that there exists locational hysteresis
as for φ ∈ (φb2, φs2) both agglomeration and symmetric dispersion are simultaneously
stable.

Further increases in b can be shown to lead, first to a situation similar to that of Fig-
ure 7, and then to ubiquitous agglomeration for any level of φ.

C Results for Section 5

C.1 Existence and multiplicity of equilibria

Under this specification, the indirect utility is given by:

vS
i =

µγ

σ

[
zi + czj

] ( λ
2 + zi

zi + φzj
+ φ

λ
2 + zj

φzi + zj

)
+

µ

σ− 1
ln
[
zi + φzj

]
+ η. (25)

11We thank Anna Rubinchik for this reference on stability conditions.
12We thank Sofia B.S.D. Castro for pointing out this potentially relevant issue.
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Differentiating ∆vS(z) ≡ vS
1(z)− v2(z)S twice with respect to z yields:

d∆vS

dz
(z) =

b1PS(z)
b2

,

where:

b1 = µ(2z− 1)(φ− 1)

b2 = (σ− 1)σ(z(φ− 1) + 1)3(z(φ− 1)− φ)3,

and PS(z) is a second degree polynomial in z. The zeros of d∆vS

dz (z) are the zeros of PS(z),
which can be at most two. However, it is possible to check that d∆vS

dz (1
2) = 0. Given

symmetry, no other real zero possibly exists. This means that ∆vS(z) changes concavity
only at symmetric dispersion. This implies that ∆vS(z) has at most two turning points
and thus, at most three equilibria. By symmetry, we can establish that there exists at most
one equilibria for z > 1

2 .

Solving the condition for any (asymmetric) dispersion equilibrium is just as daunting a
task as it is for the benchmark case, For the sake of brevity, let us just say that a dispersion
equilibrium exists if λ ≡ λ∗S(z), where λ∗S(z) is a function of z and all the parameters
contained in the analogous expression in (23).

C.2 Stability of equilibria

First, let us analyze the stability of full agglomeration. Using (25), we get that agglomer-
ation is stable if:

SS ≡
2(λ + 1)φ− c

[
(λ + 2)φ2 + λ

]
2σφ

− ln φ

σ− 1
> 0.

It is readily observable that agglomeration is always stable if the first term is positive:

c >
2(λ + 1)φ

(λ + 2)φ2 + λ
.
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We have:
lim
φ→0
SS = −∞ and S(φ = 1) =

(1− c)γ(λ + 1)
σ

> 0.

Therefore, but the Intermediate Value Theorem, there exists at least one zero φ such that
S = 0. Further, we have:

dSS

dφ
=

1
φ2

(
− cγ(λ + 2)φ2

σ
+

cγλ

σ
− 2φ

σ− 1

)
,

whereby the term in parenthesis is a second degree polynomial with negative leading
coefficient and that only changes sign once. Therefore, SS has at most one turning point.
Since dSS

dφ (φ = 1) = 1
1−σ −

cγ
σ < 0, we can conclude that the turning point is a maximum

and SS is strictly concave. Thus, there exists a unique sustain point φS
s ∈ (0, 1) and

agglomeration is stable when φ > φS
s

Second, we analyze the stability of symmetric dispersion. Using (25) it can be shown
that z∗ = 1

2 is stable if:

BS ≡ −γ(σ− 1)
[
φ2(c(2λ + 3) + 1) + 2bλ + c− 4(λ + 1)φ− 1

]
+ 2σ

(
1− φ2

)
< 0. (26)

We can see that if the first term is positive, symmetric dispersion is always unstable, i.e.,
if:

c <
φ(4λ− φ + 4) + 1
(2λ + 3)φ2 + 2λ + 1

.

Moreover, BS in (26) is a second degree polynomial with at most two zeros, φS
b1 and

φS
b1 < φS

b2, with a negative leading coefficient, which means that symmetric dispersion is
stable to the left of φS

b1, unstable for φ ∈
(
φS

b1, φS
b2

)
, and stable to the right of φS

b2. However,
it is possible to show after very cumbersome calculations that both break points cannot
co-exist. As a result, we shall focus on the more interesting case, that is the stability
around the first break point φS

b1, which is given by:

φS
b1 =2γ(λ + 1)(σ− 1)−√

−(c + 1)γ2(σ− 1)2 [c(4λ(λ + 2) + 3)− 4λ(λ + 2)− 5] + 4(c + 1)γσ(σ− 1) + 4σ2

γ(σ− 1) [c(2λ + 3) + 1] + 2σ
.
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Finally, we analyze the stability of (asymmetric) dispersion. Differentiating ∆vS(z) with
respect to z and evaluating at λ = λ∗S(z), we get that dispersion is stable if:

GS ≡(2z− 1)
(

φ2 − 1
) [

(c− 1)γ(σ− 1)(1− 2z)2 − σ
]
+

+ σ
[
2z2(φ− 1)2 − 2z(φ− 1)2 + φ2 + 1

]
ln
[

z(φ− 1) + 1
z(1− φ) + φ

]
< 0. (27)

C.3 Supercritical pitchfork bifurcation

We can get the whole picture of the dynamic properties of the model by studying the
type of local bifurcation that the symmetric equilibrium undergoes at φ = φS

b1. After some
tedious calculations, it is possible to show the following:

∂ f
∂x

(
1
2

; φS
b1

)
= 0;

∂2 f
∂x2

(
1
2

; φS
b1

)
= 0;

∂ f
∂φ

(
1
2

; φS
b1

)
= 0

∂2 f
∂φ∂x

(
1
2

; φS
b1

)
> 0;

∂3 f
∂x3

(
1
2

; φS
b1

)
< 0.

According to Guckenheimer and Holmes (2002, pp. 150), the conditions above ensure that
symmetric dispersion undergoes a supercritical pitchfork bifurcation at φ = φS

b1.
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Davis, L. S. and Şener, F. (2012). Private patent protection in the theory of schumpeterian
growth. European Economic Review, 56(7):1446–1460. 2.1

Demichelis, S. and Ritzberger, K. (2003). From evolutionary to strategic stability. Journal
of Economic Theory, 113(1):51–75. B

Dinopoulos, E. and Segerstrom, P. (2010). Intellectual property rights, multinational firms
and economic growth. Journal of Development Economics, 92(1):13–27. 1, 2.1, 2.3

Dinopoulos, E. and Segerstrom, P. S. (2006). North-south trade and economic growth. 2.1

Duranton, G. and Puga, D. (2001). Nursery cities: Urban diversity, process innovation,
and the life cycle of products. American Economic Review, 91(5):1454–1477. 1

Forslid, R. and Ottaviano, G. I. (2003). An analytically solvable core-periphery model.
Journal of Economic Geography, 3(3):229–240. 4

42



Frenken, K., van Oort, F., and Verburg, T. (2007). Related variety, unrelated variety and
regional economic growth. Regional Studies, 41(5):685–697. 1, 2.3

Fujita, M. (2007). Towards the new economic geography in the brain power society. Re-
gional Science and Urban Economics, 37(4):482–490. 1

Fujita, M., Krugman, P. R., and Venables, A. (1999). The spatial economy: Cities, regions, and
international trade. MIT press. 5.2

Fujita, M. and Mori, T. (2005). Frontiers of the new economic geography. Papers in Regional
Science, 84(3):377–405. 1

Gaspar, J. M. (2018). A prospective review on new economic geography. The Annals of
Regional Science, 61(2):237–272. 1

Gaspar, J. M. (2020). New Economic Geography: Economic Integration and Spatial Imbalances,
pages 79–110. Springer International Publishing, Cham. 2

Gaspar, J. M., Castro, S. B., and Correia-da Silva, J. (2018). Agglomeration patterns in a
multi-regional economy without income effects. Economic Theory, 66(4):863–899. 4

Guckenheimer, J. and Holmes, P. (2002). Nonlinear oscillations, dynamical systems, and bi-
furcations of vector fields. Number 42 in Applied mathematical sciences. Springer, New
York, 7th edition. 5, C.3

Howitt, P. (1999). Steady endogenous growth with population and r. & d. inputs growing.
Journal of Political Economy, 107(4):715–730. 1

Li, C.-W. (2003). Endogenous growth without scale effects: A comment. American Eco-
nomic Review, 93(3):1009–1017. 2.3

Osawa, M. and Akamatsu, T. (2020). Equilibrium refinement for a model of non-
monocentric internal structures of cities: A potential game approach. Journal of Eco-
nomic Theory, 187(C). B

Osawa, M. and Gaspar, J. M. (2021). Production externalities and dispersion process in a
multi-region economy. 1

Ottaviano, G. I. and Peri, G. (2006). The economic value of cultural diversity: Evidence
from US cities. Journal of Economic geography, 6(1):9–44. 1

Ottaviano, G. I. and Peri, G. (2008). Immigration and national wages: Clarifying the
theory and the empirics. Technical report, National Bureau of Economic Research. 1

43



Ottaviano, G. I. and Prarolo, G. (2009). Cultural identity and knowledge creation in cos-
mopolitan cities. Journal of Regional Science, 49(4):647–662. 1

Peretto, P. F. (1998). Technological change and population growth. Journal of Economic
Growth, 3(4):283–311. 1

Peretto, P. F. (2012). Resource abundance, growth and welfare: A Schumpeterian perspec-
tive. Journal of Development Economics, 97(1):142–155. 1

Peretto, P. F. (2015). From Smith to Schumpeter: A theory of take-off and convergence to
sustained growth. European Economic Review, 78:1–26. 1

Pflüger, M. (2004). A simple, analytically solvable, chamberlinian agglomeration model.
Regional science and urban economics, 34(5):565–573. 2, 3.1, 4, 5.1

Picard, P. M. (2015). Trade, economic geography and the choice of product quality. Re-
gional Science and Urban Economics, 54:18–27. 1

Tavassoli, S. and Carbonara, N. (2014). The role of knowledge variety and intensity for
regional innovation. Small Business Economics, 43(2):493–509. 1

Young, A. (1998). Growth without scale effects. Journal of Political Economy, 106(1):41–63.
1

44


