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Abstract

Over the last few decades, kernel based methods have added an important set
of tools to any statistician or econometrician, providing competitive, model free, al-
ternatives to traditional methodologies. In particular, classification Support Vector
Machines (SVMs) have proven to be among the most accurate predictors of unknown
class memberships in supervised classification problems. Unfortunately, standard
SVMs do not complement these predictions with reliable estimates of the correspond-
ing class membership probabilities. Recently, it has been shown that sequences of
nonstandard (weighted) SVMs can overcome this limitation, and may be used to re-
cover precise class probability estimates. However, existing implementations of this
approach can be computationally too demanding, and may not scale well when the
number of different classes grows. In this work, we will present an improved method
to build k-class probability estimates from sequences of weighted SVMs, with good
scaling properties as k increases. Simulation experiments show that class probability
estimation based on weighted SVMs is often more accurate than competing distribu-
tion free machine learning approaches, and are more reliable than multinomial logisic
regression when its assumptions fail. A public domain R package implementing this
proposal is under preparation.

Key Words and Phrases: support vector machines, kernel methods, multiclass classification,
multiclass probability estimation.

1 Introduction

Support Vector Machines (SVMs) were originally designed to handle two-class classification
problems, and have quickly established themselves as one of the most accurate machine
learning algorithms for class prediction. However, this success did not translate to the
related task of deriving confidence measures for these predictions, such as reliable prob-
ability estimates of class membership. In fact, Lin (2002) has shown that by targeting
directly classification boundaries, standard SVMs do not carry much further information
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about class probabilities other than the predicted class by itself. Nevertheless, Wang, Shen
and Liu (2008) noted that by appropriately weighting the loss function used in standard
SVMs, nonstandard SVMs can consistently estimate a theoretical Bayes rule for any arbi-
trary setting of class probabilities. Based on this property, Wang et al. (2008) proposed to
solve sequences of weighted SVMs with varying weight specifications, and to recover class
probabilities from the frontiers between regions of the weight domain that lead to different
predictions. This proposal was generalized by Wu, Zhang and Liu (2010) to the general
multi-class classification problem. However, for this purpose, several difficulties needed to
be resolved.

Firstly, in general multi-class problems the recovery of class probabilities from the so-
lutions of weighted SVMs is not straightforward, and direct generalizations of the corre-
sponding two-class procedure may lead to unstable estimates. To correct this problem,
Wu et al. (2010) proposed a semi-analytical indirect procedure based on the observed class
prediction frequencies, and applied it successfully to several 3-class and 5-class problems.
However, in this procedure, the number of base weighted SVMs that need to be trained
increases exponentially with the number of classes, and we are not aware of any application
of this approach to problems with more than 5-classes.

Secondly, consistency properties are not guaranteed for general multi-class classification
SVMs, and many of the best known multi-class SVMs, particularly the popular Crammer
and Singer (CS) SVM (Crammer and Singer, 2001), do not satisfy it. To correct this prob-
lem, Wu et al. (2010) modified the loss function used in the CS SVM in such a way that
consistency is satisfied. Unfortunately, this modification had the unintended consequence
of leading to SVMs whose training requires the optimisation of nonconvex problems, in-
creasing the computational challenges, and making this method impractical for big, or even
moderate, data problems.

This paper focus on strategies designed to overcome these computational difficulties.
In particular, on the one hand, we will propose an improved method for recovering class
probability estimates from weighted SVM predictions. In our approach, these estimates
will be based on the solution of linear programming models that optimize an l1-norm
measure of the agreement between the predictions implied by probability estimates, and
those made by weighted SVMs. One important advantage of this strategy is that, unlike
in Wu et al. (2010) method, the different weight specifications used do not have to be
uniformly distributed over a k-dimensional simplex, which allows for the creation of grids
with satisfatory resolution, while ensuring that the number of required weighted SVMs
only grows linearly with the number of different classes. On the other hand, we propose to
replace Wu, Zhang and Liu (WZL) SVM by an SVM based on a universal kernel without
bias terms, using the weighted loss proposed by Lee, Lin and Wahba (LLW) (Lee et al.
(2004)). We note that the LLW loss leads to convex optimization problems and, as noted
by Dogan, Glasmachers and Igel (2016), for multiclass SVMs based on universal kernels,
dropping bias terms is statistically of minor importance, while allowing for the use of
computationally efficient decomposition training algorithms.

Based on these strategies, we were able the find reliable class probability estimates for
several problems with hundreds of observations and dozens of different classes. Simulation
experiments show that the resulting estimators are competitive, comparing favorably with
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alternative machine learning based approaches, as well as multinominal logistic regression
when its assumptions are violated.

The remainder of this paper is organized as follows. Section 2 introduces notation, and
presents the weighted multiclass SVM formulations used in the paper. Section 3 formalizes
the method of estimating class estimates from sequences of weighted SVMs. Section 4
presents an efficient training algorithm for these SVMs. Section 5 describes controlled
simulation experiments, and Section 6 concludes the paper.

2 Weighted Multiclass SVMs

Let T = {(x1, y1), . . . , (xn, yn)} be a training set of n examples, where xi is an attribute
descriptor belonging to some domain, X , the label yi is an integer belonging to the set
Y = {1, . . . , k}, and all pairs (xi, yi) were independently generated from some unknown,
but common, probability distribution, P (X, Y ). Furthermore, let E = {x1, . . . , xm} be
an estimation set of m examples with unknown labels. Based on T , we are interested in
developing estimator functions (pc(x) ; c ∈ Y) for the posterior class probabilities:

pc(x) = P (Y = c|X = x) =
P (x, c)∑
c′∈Y P (x, c′)

(1)

and apply these functions to all xi ∈ E . Such estimators are to be recovered from a sequence
of nonstandard (weighted) multi-class SVMs yielding decisions rules with general form

ŷ = argmaxc fc(x) (2)

where fc is the cth element of the vector function f : X 7→ Rk that solves the optimization
problem:

minf∈Fk n−1
∑

i∈T πyi L(f(xi), yi) + λ J(f) (3)

subject to
∑

c∈Y fc = 0 (4)

Here, Fk is a cartesian product of some known functional space, F , the penalty operator
J : Fk 7→ R+

0 measures model complexity, λ ∈ R+ is a regularization parameter that
controls the trade-off between the smoothness of f and the multi-class large margin loss
L : Rk × Y 7→ R+

0 , and the weighting vector, π, belongs to the k-dimensional simplex,
Ak = {π ∈ Rk :

∑k
c=1 πc = 1 , ∀c πc ≥ 0} .

In this paper we will study SVMs based on universal kernels, where F is a strictly
positive definite Reproducing Kernel Hilbert Space (RKHS), HK, induced by some known
kernel function K : X × X 7→ R, and endowed by the norm ||.||HK

(Wahba (1998), Cris-
tianini and Shawe-Taylor (2000), Poggio et al. (2002)). Then, the representer theorem
(Kimeldorf and Wahba (1971)) implies that for all x ∈ X and c ∈ Y , fc(x) and ||fc||2HK

can
be expressed as fc(x) =

∑n
i=1 θ

c
i K(xi,x), ||fc||2HK

=
∑n

i=1

∑n
j=1 θ

c
i θ

c
j K(xi,xj), θ

c ∈ Rn,
and the penalty J(.) is typically chosen as the sum of the squared norms of the f compo-
nents, i.e., J(f) =

∑k
c=1 ||fc||2HK

.
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We note that this framework differs from the traditional one, often assumed in the
SVM literature, in that our classification functions, f , do not include bias terms. Poggio
et al. (2002)) show that the general approximation properties of strictly positive definite
Reproducing Kernel Hilbert Spaces do not require such terms, and Dogan et al. (2016)
recommend dropping them from standard multiclass SVMs, since this suggestion can lead
to substantial computational gains without affecting the main statistical properties of the
resulting classifiers. We followed Dogan’s recommendation and our simulation results, to
be described in Section 5, suggest that the resulting weighted SVMs are also not adversely
affected by this strategy.

Different weighted versions of known multi-class SVMs can be specified as particular
cases of decision rule (2) and optimization model (3) (4), by choosing particular loss func-
tions. For instance, the SVMs proposed by Crammer and Singer (2001) (CS) and Lee, Lin
and Wahba (2004) (LLW) are respectively defined by the following losses:

LCS(f , y) = (1−maxc∈Y\{y}(fy − fc))+ (5)

LLLW (f , y) =
∑

c∈Y\{y}(fc + (k − 1)−1)+ (6)

where (u)+ := max(0, u).
A desirable theoretical property of weighted multi-class SVMs is weighted Fisher-

consistency, which implies that for problems with equal misclassification costs and weighting
vectors equal to the a-priori class probabilities, as the size of the training sample increases
the resulting decision rule approaches the theoretical Bayes rule. Formally, this property
may be defined as follows:

Definition 1: Weighted Fisher-consistency (Wu, Zhang and Liu)

A multi-class functional margin based loss is weighted Fisher-consistent if the minimizer
f∗ of E[πYL(f(X), Y )|X = x)] under (4), satisfies

argmaxc∈Y f∗c (x) = argmaxc∈Y πc pc(x) ∀x ∈ X ,∀π ∈ Ak
Wu et al. (2010) have shown that the loss assumed by Crammer and Singer is not

weighted Fisher-consistent, but some truncated versions of it are. In particular, in their
simulation studies Wu et al. (2010) used the following Fisher-consistent loss

LWZL(f , y) = max[ max
c∈Y\{y}

(1− fy − fc))+ , 1 + (k − 1)−1] (7)

On the other hand, Lee et al. (2004) proved that for any choice of an C ∈ (R+
0 )k×k cost

matrix , the minimizer of
∑

c∈Y\{y}C(y, c) (fc+(k−1)−1)+ under (4), is given by the vector

f ∗1 with components

f∗1j =

{
1 if j = argminc∈Y

∑
c′∈Y\{c}C(c′, c) pc′(x)

−(k − 1)−1 otherwise

In particular, noting that argminc∈Y
∑

c′∈Y\{c} πc′ pc′(x) = argminc∈Y
∑

c′∈Y πc′ pc′(x)−
πc pc(x) = argmaxc∈Y πc pc(x), the choice of C as a matrix satisfying C(c′, c) = πc′ ∀c 6= c′,
leads to the mininizer, f ∗2, defined as
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Table 1: Number of grid points in uniformly distributes grids

dπ k = 3 k = 5 k = 10 k = 23

0.05 171 3876 92378 −−
0.02 1176 211876 2.05× 109 4.93× 1013

0.01 4859 3764376 1.73× 1012 5.71× 1021

f∗2j =

{
1 if j = argmaxc∈Y πc pc(x)
−(k − 1)−1 otherwise

which implies the weighted Fisher-consistency of the Lee, Lin and Wahba loss (6) in the
Wu, Zhang and Liu sense.

In this paper we propose to estimate class probabilities from the class predictions given
by weighted SVMs based on loss (6). One advantage of using this loss, is that the training
of the resulting SVMs leads to convex optimization models, which are faster to solve than
the nonconvex models resulting from loss (7). In Section 4 we will describe an efficient
algorithm to train the weighted SVMs proposed here.

3 SVM Probability Estimation

In order to estimate class probabilities from the predictions given by weighted SVMs,
we need first to train several weighted SVMs with different weight specifications. Let
G be the grid of π specifications, and πg a generic element of G. Wu et al. (2010) de-
scribe two alternative ways of estimating class probabilities from the predictions given
by the πg weighted SVMs. The first method is based on a direct search for the bound-
aries of Ak where those predictions change. However, this method lead to unstable esti-
mates and was replaced by a second method, where class probabilities are estimated by
the p∗(x) = (p∗1(x),p∗2(x), . . . ,p∗k(x)) solution of the system hc(p1(x),p2(x), . . . ,pk(x)) =
propc(x); c = 1, 2, . . . , k, where hc(p(x)) represents the volume proportion of the Ak sim-
plex where πc pc(x) ≥ πc′ pc′(x) ∀c′ 6= c, and propc(x) the observed proportion of weighted
SVMs that assign an example described by x to class c. This method leads to consistent,
and more stable, estimates of pc(x), as long as the πg are uniformly distributed over Ak,
and the grid step size, dπ, converges to zero as the sample size increases without limit.
However, the requirement of a strict uniform distribution over Ak leads to a grid size of

#G =
(
d−1
π +k
k−1

)
, a number that increases exponentially with k. Table 1 shows some values of

#G for different combinations of dπ and k, up to k = 23, which is the number of different
classes in character recognition problems. It is clear that this method becomes computa-
tionally intractable for problems with moderate or large k, and we are not aware of any
application of this approach to problems with more than 5 classes.

In this paper, we will propose an alternative method to recover class probabilities frorm
class predictions, where the grid of weigh specifications does not have to be uniformly
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distributed over Ak. Our approach is based on the optimization of an heuristic l1-norm
measure of the agreement between the weighted SVMs predictions and the Bayes classifica-
tion rules implied by the pc(x) estimates. In particular, consider a weight specification πg

and the corresponding weighted SVM prediction ŷg. Interpreting πg as a vector of a-priori
class probabilities, the SVM prediction agrees with the optimal Bayes rule for a vector of
a-posteriori probabilities, pc(x), iff

πg
ŷg

pŷg(x) ≥ πg
c pc(x) ∀c ∈ Y\{ŷg} (8)

When it is possible to find p(x) vectors such that (8) is satisfied for all πg ∈ G, a
reasonable estimation criterion is to choose amongst such vectors, the one that maximizes
the desirable sum of the l1-norm deviations πg

ŷg
pŷg(x) − πg

cpc(x). On the other hand,

when it is not possible to find a vector that always satisfies (8), one may search for one
that minimizes the undesirable deviations πg

cpc(x) − πg
ŷg

pŷg(x). Putting these two goals
together, we propose to search for the probability estimate that solves

minp(x)∈Ak

∑
πg∈G

∑
c∈Y\{ŷg}

η (πg
c pc(x)− πg

ŷg
pŷg(x))+ −

− (πg
ŷg

pŷg(x)− πg
cpc(x))+ (9)

subject to pc(x) ≥ ε ∀c ∈ Y (10)

where the constraint (10) enforces strict positivity of the p(x) estimates, η is an hyper-
parameter that controls the trade-off between the desirable and undesirable deviations,
and ε is a small positive constant. In all the experiments reported here, we set ε = dπ/2,
reflecting the numerical precision implied by the grid resolution.

The optimization of l1-norm measures similar to the one used in (9)-(10) has been widely
studied in the Operations Research literature on supervised classification (see Duarte Silva
(2017)), where it has been shown that the resulting optimization problems can be easily
solved by straightforward linear programming models. In the current context, one impor-
tant advantage of this method is the fact that it does not require πg to be strictly uniformly
distributed over Ak, which allows for alternative ways of defining representative G sets with
a considerable smaller number of grid points. We will describe one such alternative, where
we look at one component of π, say c, at the time, and ensure that a resulting set of πg

specifications gives an adequate representation of the (0, 1) interval, while the remaining
components of π are assigned at random. The details are provided in algorithm 1 , where it
is shown that the representation of the (0, 1) line is satisfied by setting πc in turn to each of
the d−1π -1 uniformly distributed points of the (0, 1) line, with a distance of dπ between each
point. The resulting grid size equals #G = k d−1π −k, a number that only increases linearly
with k. Table 2 shows the number of base SVMs that need trained in this approach. The
contrast with the corresponding figures shown before in Table 1 is remarkable.

Summing it up, algorithm 2 summarizes the major steps required to implement the
proposal made in this paper.
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Algorithm 1 Generating a grid of weight vectors

Parameters: k, dπ
Output: A G grid of weight vectors

1: Let pbc = d−1π − 1.
2: Let G = ∅, g = 0.
3: for c ∈ Y do
4: for a = 1 to pbc do
5: Let g = g + 1.
6: Initialize the k-dimensional vector πg.
7: Let πg

c = a dπ.
8: Generate independently k-1 uniform random numbers (Uc′ , c

′ ∈ Y\{c}) on the
unit interval.

9: Let SU =
∑

c′∈Y\{c} Uc′ .

10: for c′ ∈ Y\{c} do
11: Let πg

c′ = Uc′(1− πg
c)/SU .

12: end for
13: Add πg to G.
14: end for
15: end for
16: return G.

Table 2: Number of grid points in the proposed method

dπ k = 3 k = 5 k = 10 k = 23

0.05 57 95 190 437
0.02 147 245 450 1127
0.01 297 495 990 2277

4 Efficient SVM Training Algorithms

The state of art algorithms for training SVMs are based on decomposition strategies to solve
dual formulations of the associated optimization problems. In the case of 2-class problems,
a standard reference is Platt’s Sequential Minimal Optimization (SMO) algorithm (Platt,
1999) which decomposes a large convex quadratic optimization problem into a sequence of
two-dimensional quadratic problems that can be solved analytically. This algorithm was
adapted by Dogan, Glasmachers and Igel (2011) to solve the most common k-class SVMs,
including those based on the unweighted LLW loss. It is straightforward to show that this
approach also applies to SVMs using the weighted LLW loss. In particular, as shown in the
Appendix, the Wolfe dual of optimization problem (3) - (4) with loss (6) can be expressed
as the following convex quadratic optimization problem with box constrains:
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Algorithm 2 Main probability estimation algorithm

Input: A training set T , and a estimation set E
Output: The set P , of probability vectors for E .

1: Let P = ∅.
2: Define a grid G of weight specifications using algorithm 1.
3: for πg ∈ G do
4: Solve optimization model (3)-(4) using loss (6).
5: for e ∈ E do
6: Predict and save a class for entity e based on the πg weighted SVM.
7: end for
8: end for
9: for e ∈ E do

10: Solve optimization model (9) - (10) and add its solution to P .
11: end for
12: return P .

maxα∈Rn×k
1

k−1
∑

i∈T
∑

c∈Y\{yi}αic −
− 1

2λ

∑
i,i′∈T K(xi,xi′)

∑
c,c′∈Y (δcc′ − 1

k
) αic αi′c′ (11)

subject to 0 ≤ αic ≤
πyi

n
i ∈ T , c ∈ Y\{yi} (12)

αiyi = 0 i ∈ T (13)

Problem (11)-(13) can be solved efficiently by the following algorithm: (i) initialize the
α vectors at 0; (ii) choose the pair of α components, αi and αi′ , that lead to the maximal
increase in (11) subject to (12)-(13); (iii) find the analytical solution of problem (11)-(13)
restricted to αi and αi′ ; (iv) repeat (ii) and (iii) until convergence.

The details can be found in Dogan et al. (2011), while in Dogan et al. (2016) it is argued
that, under reasonable assumptions, the asymptotic time complexity of this algorithm
equals the one required to solve Crammer and Singer’s SVM. We note that the popularity
of Crammer and Singer SVM is mostly due to the fact that this algortithm is genarilly
believed to be the fastest to train among all all-in-one multiclass SVMs.

5 Simulation Experiments

In this section we illustrate the performance of this proposal, comparing it with five alter-
native methods under four simulation scenarios previously discussed in the literature. The
methods under comparison are our proposal that we will call Probability Vector Machines
(PVM), Multinomial Logistic Regression (MLogReg), two pairwise SVM based methods
proposed respectively by Wang, Zhang and Wu (WZW) (Wang et al., 2019), and Xu and
Wang (XW) (Xu and Wang, 2013), classification trees (TREE) (Breiman et al., 1984), and
Random Forests (RF) (Breiman, 2001). The Multinomial Logistic Regression is arguably
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the most important reference method in the classical statistical and econometric literature,
and relys on mild assumptions about the distribution of the posterior probabilities, pc(x).
All the remaining methods are distribution free. The pairwise SVM based methods use the
well known technique of decomposing a k-class problem into k different
2-class problems based on an one-against-the-rest strategy. Classification Trees and Ran-
dom Forests are two well established machine learning methedologies for supervised classi-
fication.

We consider four different experiments with different data conditions. The first two
experiments use setups initially considered in Wu et al. (2010). Both these experiments
are 3-class problems, and the first one illustrates conditions in which the assumptions of
MLogReg are satisfied, while in the second one the data was generated by highly non-linear
functions that lead to a gross violation of these assumptions. The third and fourth experi-
ments use setups initially considered in Xu and Wang (2013) where the data was generated
by heavy-tailed distribtions that also violate MLogReg assumptions. These two experi-
ments consider, respectivelly a 5-class (3rd experiment) and a 10-class (4th experiment)
problem. The details of the data generation are described in the paragraphs below.

Experiment 1. The first experiment uses the data conditions described in Example 1 of
Wu et al. (2010), namely training samples of 400 observations with the Y class labels gen-
erated uniformly from Y = {1, 2, 3}, and 2-dimensional predictors generated conditionally
on Y, from a Gaussian distribution with mean vector µ(y) = [cos(2yπ/3), sin(2yπ/3)]T

and covariance matrix Σ = 0.72 I2, with I2 being the 2-dimensional identity. The left panel
of figure 1 displays a validation sample with 1000 examples generated from this condition.

Figure 1: Data for Experiments 1 and 2

Experiment 2. The second experiment uses the data conditions described in Example
3 of Wu et al. (2010), namely training samples of 600 observations with 2-dimensional
predictors generated uniformly over the disk {x : x21 + x22 ≤ 100}, and class probabilities
generated conditionally on x from pc(x) = exp(gc(x))/

∑3
c′=1 exp(gc′(x)) , c ∈ Y = {1, 2, 3},

where g1(x) = Φ−1(T2(−5x1

√
3 + 5x2)), g2(x) = Φ−1(T2(−5x1

√
3 − 5x2)), g3(x) = 0, and
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Φ(.)T2(.) denote the univariate cumulative standard normal and student t with 2 degrees
of freedom (t2) distributions. The right panel of figure 1 displays a validation sample with
1000 examples generated from this data condition.

Experiments 3 and 4. The third and fourth experiments use the data conditions de-
scribed in Examples 1 and 2 of Xu and Wang (2013), namely training samples of 400
observations with the Y class labels generated uniformly from Y = {1, 2, . . . , k}, and 2-
dimensional predictors generated conditionally on Y, from a t2 distribution with mean
vector µ(y) = [cos(2yπ/k), sin(2yπ/k)]T and covariance matrix Σ = diag(1, 2). In exper-
iment 3, k = 5 while in experiment 4, k = 10. Figure 2 displays a validation sample with
1000 examples generated from experiment 3. The pattern for the condtion with 10 classes
(experiment 4) is similar.

Figure 2: Data for Experiment 3

In all fourth experiments, we trained the six estimation methods on 50 different, in-
dependently generated, training samples. In the SVM based methods (PVM, WZW and
XW) we always used a Radian Basis Function Kernel, K(xi,xi′) = exp−ρ||xi,−xi′ ||22 , with
the hyperparameter ρ chosen as the inverse of the median between all pairwise distances
||xi,−xi′||22 i, i′ ∈ T i 6= i′, in the training sample (see Caputo et al. (2002)). The reg-
ularization parameter λ in (3), was found by a two step search that tries to minimize the
log-likelihood, lnL =

∑
i ln p̂yi(xi), in an independently generated tuning set with the same

size as the training set. In the first step we searched for the λ0 value that minimizes lnL
over the set {25j| j = −3,−2, . . . , 3}, and in the second step we refined the search, looking
for the the minimizer of lnL over {2jλ0| j = −2,−1, 0, 1, 2}. For the PVM method, the
grid step size was set at dπ = 0.2/

√
n which leads to dπ = 0.01 in experiments 1, 3 and 4,
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and dπ = 0.0082 in experiment 2. The η hyperparameter in (9) was alwyas set at η = 15
which, in auxiliary simulation experiments (results not shown), has proved to lead to good
results across a wide range of different data conditions. For the Tree and Random Forest
methods we relied on the TREE and RF functions of the rpart (Therneau and Atkinson,
2019) and randomForest (Liaw and Wiener, 2002) R packages, with all arguments set at
their default values,

For all experiments and replications, we evaluated the six estimation methods under
comparison, by computing the l2 norm error, l2 err = 1

#E
∑

i∈E
∑

c∈Y(p̂c(xi)−pc(xi))
2, and

Empirical Generalized Kullback-Leiber (EGKL) loss, EGKL = 1
#E
∑

i∈E
∑

c∈Y pc(xi) ln pc(xi)
p̂c(xi)

,

in an independently generated validation data set (E) with 1000 examples.
Figures 3 through 6 show sinaplots (Sidiropoulos et al., 2018) of the l2-norm and EGKL

errors for all simulation experiments, while tables 3 through 6 present the corresponding
means, mean standard errors, and medians. Tables 3 and 4 also show, under the WZL
acrynom, the reported average of these measures (see Wu et al. (2010)) for the original
Wu, Zhang and Liu proposal. We note that, unlike in our experiments, Wu et al. (2010)
did not use an universal kernel but a linear one, taking advantage of the knownn form of
the classification boundaries for these conditions. However, in real data problems the true
form of these boundaries is always unknown.
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Figure 3: l2-norm and EGKL error rates of Experiment 1.

For some combinations of experiments, replications, and classes, the XL, TREE or
RF methods estimate class probabilities exactly by 0 which leads to an infinite value of
the EGKL loss. This problem does not occur for the l2-norm error measure, nor for the
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Table 3: Error rates for Example 1

PVM MLogReg WZW XW TREE RF WZL
l2err

mean 0.57 0.36 1.62 6.26 8.23 5.18 0.90
(stderr) (0.04) (0.03) (0.09) (0.13) (0.15) (0.11) –
median 0.52 0.30 1.59 6.26 8.26 5.13 –

EGKL
mean 1.53 0.77 3.47 ∞ ∞ ∞ 2.56
(stderr) (0.09) (0.07) (0.15) – – – –
median 1.44 0.64 3.38 ∞ ∞ ∞ –
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Figure 4: l2-norm and EGKL error rates of Experiment 2.

Table 4: Error rates for Example 2

PVM MLogReg WZW XW TREE RF WZL
l2err

mean 2.50 6.62 5.01 9.44 10.13 5.26 4.47
(stderr) (0.09) (0.03) (0.31) (0.22) (0.27) (0.08) –
median 2.38 6.58 4.71 9.03 9.75 5.35 –

EGKL
mean 5.97 12.33 8.49 ∞ ∞ ∞ 11.79
(stderr) (0.11) (0.06) (0.40) – – – –
median 5.81 12.18 7.70 ∞ ∞ ∞ –
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Figure 5: l2-norm and EGKL error rates of Experiment 3.

Table 5: Error rates for Experiment 3

PVM MLogReg WZW XW TREE RF
l2 err

mean 4.17 5.01 2.47 2.82 4.73 13.19
(stderr) (0.08) (0.10) (0.05) (0.04) (0.17) (0.11)
median 4.13 4.91 2.39 2.81 4.57 13.23

EGKL
mean 11.28 15.80 6.00 ∞ ∞ ∞
(stderr) (0.18) (0.20) (0.12) – – –
median 11.26 15.66 5.81 6.36 ∞ ∞

Table 6: Error rates for Experiment 4

PVM MLogReg WZW XW TREE RF
l2 err

mean 2.63 3.09 1.81 1.81 3.93 14.89
(stderr) (0.06) (0.05) (0.03) (0.03) (0.13) (0.10)
median 2.53 3.07 1.81 1.78 3.82 14.81

EGKL
mean 11.83 18.47 8.64 8.03 ∞ ∞
(stderr) (0.19) (0.29) (0.16) (0.15) – –
median 11.42 18.14 8.54 7.76 ∞ ∞
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Figure 6: l2-norm and EGKL error rates of Experiment 4.

remaining three methods, which always enforce strictly positive probability estimates. Nev-
ertheless, we prefer the EGKL loss as an global measure of estimation performance because
this measure was specifically designed to compare probability distributions and, unlike the
l2 norm error, does not treat equal absolute errors as equally important, regardless of being
associated with probabilities close to 0.5 or to the 0. or 1. boundaries of their domain.
However, we note that, in these experiments, when results for the EGKL loss are available
the resulting rankings of the six estimation methods tends to agree with the rankings given
by the l2 error.

Overall, these results confirm the previous findings in this literature. In particular,
multinomial logistic regression gives the best results when its assumptions are met (Exper-
iment 1), but when they are grossly violated one of the SVM based methods performs the
best. On the other hand, the performance of the Tree and Random Forest methods is disap-
pointing, suggesting that in spite of their merits for pure supervised classification problems,
they are not as reliable at providing estimates of class probabilities. Among the three SVM
based methods we did not find a single clear overall winner. In these experiments, the
pairwise one-against-all methods performed the best for the conditions characterized by
heavy-tailed distributions (Experiments 3 and 4), while the all-in-one approach studied
here gave the best results for the non-lineary transformed data (Experiment 2). Further-
more, this approach seems relatively stable across different data conditions, coming often as
second best when it is not the ideal method and, in particular, performing better than the
SVM pairwise methods whem the assumptions of logistic regression are satisfied (Experi-
ment 1), and better than logistic regression when the data has severe outliers (Experiments
3 and 4). Among the parwise one-against-all SVM methods the proposal of Wang, Zhang
and Wu performed better the method of Xu and Wang, confirming previous findings re-
ported in Wang et al. (2019). Finally the comparison of the results of experiments 3 and
4 suggests that the number of different classes might not a strong influence on the relative
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standing of alternative estimation methods. Naturally, additional studies are necessary to
verify if this result holds for other, more general, data conditions.

Remarkably, in the experiments for which results for the original all-in-one Wu et al.
(2010) proposal were available, those results were improved by the method developed here,
even though we used an universal agnostic kernel, and only 297 (Experiment 1) and 364
(Experiment 2) grid points, while Wu et al. (2010) used the ideal kernel for these conditions,
and a total of 1176 grid points in each experiment. We suspect that this surprising result
might be explained by the fact the recovery of probabilities by the optimizing (9) uses
more information than the matching of observed with expected frequencies employed in
the original Wu et al. (2010) proposal.

6 Conclusions

Kernel based methods are an important set of tools for any modern statistician or econo-
metrician. However, most common kernel methods focus on pure prediction problems,
and do not pay enough attention to the related, and critical, problem of providing reliable
confidence measures for those predictions. In the particular case of kernel based classifica-
tion SVMs, this problem has being tackled by taking advantage of information provided by
sequences of weighted SVMs. However, up to now, for a moderate or large number of differ-
ent classes this approach was only computationally feasible using pairwise one-against-all
strategies, and not by the theoretically more sound all-in-one approach.

In this paper, we have filled this gap, and developed a computationally efficient estima-
tion method based on sequences of weighted SVMs that consider all classes, simultaneously.
Furthermore, we have provided statistical evidence that SVM based probability estimators
are among the most reliable distribution free estimators for class probabilities, and beat
multinomial logistic regression when its assumptions are grossly violated. In line with sim-
ilar results for the pure classification problems, we have found that no particular method
of extending 2-class to general k-class SVM methodologies dominates the alternatives, and
that different data conditions may favor different approaches.

A public domain R package implementing the methods discussed here is under prepa-
ration, and we expect to submit it to the CRAN repository in the not too distant future.
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Appendix

Derivation of SVM dual

Here, we will show that the dual of optimization problem (3) - (4) with loss (6) is given
by problem (11) - (13). First notice that, using matrix notation and introducing slack
variables, the primal problem can be expressed as

minθ,ε∈Rn×k

∑
c∈Y
[
λ θT.c K θ.c + CT

.c ε.c
]

(14)

subject to K θ ≤ −(k − 1)−1 1n×k + ε (15)∑
c∈Y K θ.c = 0n (16)

ε ≥ 0n×k (17)

where, with a slight abuse of notation, the matrix θ is defined as the matrix with columns
θ.c equal to the θc vectors of the fc expansion given by the representer theorem, K ∈ Rn×n

is the Gramm matrix with generic element Kii′ = K(xi,xi′), and the cost matrix C ∈ Rn×k

has generic elements Cic = n−1 πyi if c 6= yi, and Ciyi = 0. Furthermore, we denote the
transpose of a generic matrix M (or vector v) by MT (vT ), its c-column by M.c and
1n×k, 0n×k, 0n are n × k matrices and an n-dimensional vector with all elements equal,
respectively, to 1 and 0.

Introducing Lagrange multipliers for constraints (15), (16) and (17), the Wolfe dual
problem can be written as

maxα,γ∈Rn×k,β∈Rn infθ,ε∈Rn×k LD =

=
∑

c∈Y
[
λ θT.c K θ.c + CT

.c ε.c + αT
.c

(
K θ.c + 1

k−1 1n − ε.c
)
− γT.c ε.c

]
+

+ βT
[∑

c∈Y K θ.c
]

(18)

subject to α, γ ≥ 0n×k (19)

Minimization in order to the θ and ε primal variables leads to

∂LD
∂θ.c

= 0n ⇔ 2λ θT.c K + (αT
.c + βT ) K = 0n ⇒ θ.c = −(2λ)−1 (α.c + β) (20)

∂LD
∂ε.c

= 0n ⇔ C.c − (α.c + γ) = 0n (21)

17



where the second equality in (20) follows from the fact that K, being a positive definite
matrix, is always non-singular.

From (21) and (19), it follows that

0n×k ≤ α ≤ C (22)

while replacing (20) into (16) leads to

∑
c∈Y

K (α.c + β) = 0n ⇒ β = −k−1
∑
c∈Y

α.c (23)

Replacing (20) and (23) into (18), and simplifying with the help of (21), leads to

LD =
∑
c∈Y

[ (k − 1)−1 αT
.c 1n − (2λ)−1 αT

.c K (α.c − k−1
∑
c′∈Y

α.c′) ] (24)

so that the dual in matrix form is given by

maxα∈Rn×k

∑
c∈Y [ (k − 1)−1 αT

.c 1n − (2λ)−1 αT
.c K (α.c − k−1

∑
c′∈Y α.c′) ]

subject to 0n×k ≤ α ≤ C

which is equivalent to (11) - (13).
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